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TALK OVERVIEW

I. Smart Material Applications
e Piezoelectrics — Tunable lenses, nanopositioning
e Shape Memory Alloys — Shape modification

e Magnetostrictives — High force transduction

Il. Modeling Hierarchies

e Develop energy relations at lattice level for single crystal,
homogeneous compounds.

e Incorporate polycrystallinity and material nonhomogeneities
through stochastic homogenization to obtain macroscopic
constitutive relations.

Il1l. Experimental Validation
e PZT5A — Major and biased minor loops

e Terfenol-D — Major and biased minor loops
e SMA - Thin film

Goal:

e Develop a unified framework for model and control
design for ferroic (ferromagnetic, ferroelectric and
ferroelastic) materials.



. PIEZOCERAMICS - NANOPOSITIONING

Atomic Force Microscope:

e Can provide atomic resolution

e Human chromosomes Photodiode
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e Nanopositioning at the atomic level

e Electron spin detection: requires angstrom-level tracking



SHAPE MEMORY ALLOYS

Aerospace and Aeronautic Applications:

Embedded SMA

e Shape modification Actuators

of airfoils A

e Construction of modular e
mirrors and antennas ‘

e Future Directions: MEM's,
thin films — Sandia National Labs

. . . r
Vibration Attenuation: Stress
Floor Mass
SMA Tendons Strain
Flexible
Wall SMA Vibration

Isolation System

Membrane
Mirror

e Vibration attenuation in aerospace structures (e.g., mirrors)

Strategy:

e Operate in hysteretic regime to optimize damping



MAGNETOSTRICTIVE MATERIALS

Automotive Application: e.g., High speed milling

e Accuracy: 41 micron

e Speed: 3000 rpm

Field-Strain Relation

Aerospace Applications:
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MATERIAL ANALOGIES

Ferroelectric Ferromagnetic Ferroelastic
Polarization Magnetization Strain
Electric field Magnetic field Stress
Paraelectric phase | Paramagnetic phase Austenite phase
Ferroelectric phase | Ferromagnetic phase Martensite phase
Ferroelectric Bloch or Neel walls Boundaries between
domain walls martensite variants
Devonshire theory | Mean field (Weiss) theory | Landau theory
Micromagnetic theory Ginzburg-Landau theory
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MECHANISMS WHICH PRODUCE HYSTERESIS

Ferroelectric: Dipole switching
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Ferroelastic: Phase transitions




MESOSCOPIC MODEL - HELMHOLTZ ENERGY
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MESOSCOPIC MODEL - GIBBS ENERGY

Y(P,T) = G(O,P,T) G(EP.T) GEPT)

v/ T\

Gibbs Energy Relations:
G(E,P,T)=v(P,T)— EP (Ferroelectric)

GH,M,T)=vy(M,T)— nHM  (Ferromagnetic)

G(o,e,T)=1(e,T) — o¢ (Ferroelastic)



MESOSCOPIC MODELS -
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Ferroelastic: Analogous

Magnetization:
M=z, (My)+z_ (M)
where
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MACROSCOPIC MODELS
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I1l. EXPERIMENTAL VALIDATION

PZT5A: Lognormal /normal densities
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VALIDATION - FERROMAGNETIC MATERIALS
Example 1: Steel data from [Jiles and Atherton; 1984]
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EXPERIMENTAL VALIDATION - SMA

Thin Films:
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CONCLUDING REMARKS
Model Attributes:
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